Atcoder Grand Contest 038
A - 01 Matrix
想了一会儿。。qwq
显然,令 mp[1 ~ b, 1 ~ a] = 1, mp[b + 1 ~ n, a + 1 ~ m] = 1 即可。
B - Sorting a Segment
我们发现,若排序 (l1, r1) 得到的序列与排序 (l2, r2) 得到的序列相同(r1 < l2),那么排序 (l1, r1), (l1 + 1, r1 + 1), (l1 + 2, r1 + 2) … (l2 - 1, r2 - 1), (l2, r2) 得到的序列也是相同的。
排序 (l, r) 与 (l + 1, r + 1) 得到的序列相同当且仅当在 [l, r + 1] 中,a[l] 是最小值,a[r + 1] 是最大值。这个用单调队列判断即可,最后用方案总数减去相同的方案数得出答案!
code :1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
using namespace std;
const int N = 2e5 + 10;
int n, K, a[N], q[N], ans, mark[N], b[N];
int main() {
cin >> n >> K;
rep(i, 1, n) cin >> a[i];
ans = n - K + 1;
int cnt = 0, tot = 0;
rep(i, 1, n) {
if (a[i] > a[i - 1]) b[i] = b[i - 1] + 1;
else b[i] = 1;
}
int l = 1, r = 0;
rep(i, 1, n) {
if (i >= K) {
while (l <= r && q[l] < i - K) ++l;
}
if (q[l] == i - K) mark[i]++;
while (l <= r && a[q[r]] > a[i]) --r;
q[++r] = i;
}
l = 1, r = 0;
for (int i = n; i >= 1; i--) {
if (i <= n - K + 1) {
while (l <= r && q[l] > i + K) ++l;
}
if (q[l] == i + K) mark[i + K]++;
while (l <= r && a[q[r]] < a[i]) --r;
q[++r] = i;
}
bool ff = 0;
rep(i, K, n) {
if (b[i] >= K) {
if (!ff) ff = 1;
else tot++;
} else if (mark[i] == 2) tot++;
}
printf("%d\n", ans - tot);
return 0;
}
C - LCMs
数论题!Atcoder真全
$\sum\limits_{i=1}^{n}\sum\limits_{j=i + 1}^n\frac{A_iA_j}{gcd(A_i,A_j)}$
= $\sum\limits_{d=1}^N\frac{1}{d}\sum\limits_{i=1}^n\sum\limits_{j=i+1}^nA_iA_j\sum\limits_{kd|A_i,kd|A_j}\mu(k)$
= $\sum\limits_{d=1}^N\frac{1}{d}\sum\limits_{k=1}^{N/d}\mu(k)(\sum\limits_{kd|A_i}\sum\limits_{kd|A_j}A_iA_j)$
右边这个 “()” 里的部分可以调和级数复杂度预处理
code :1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
using namespace std;
const int N = 1e6, mod = 998244353, M = 2e5 + 10;
typedef long long ll;
ll n, a[M], inv[N + 5], bin[N + 5], ans, f[N + 5];
int mu[N + 5], prime[N + 5], tot, mark[N + 5];
void prework() {
mu[1] = 1;
rep(i, 2, N) {
if (!mark[i]) prime[++tot] = i, mu[i] = -1;
for (int j = 1; j <= tot && i * prime[j] <= N; j++) {
mark[i * prime[j]] = 1;
if (i % prime[j] == 0) {
mu[i * prime[j]] = 0; break;
}
mu[i * prime[j]] = -mu[i];
}
}
inv[1] = 1;
rep(i, 2, N) inv[i] = inv[mod % i] * (mod - mod / i) % mod;
}
int main() {
prework();
cin >> n;
rep(i, 1, n) cin >> a[i], bin[a[i]]++; // 小技巧
rep(i, 1, N) {
ll sum = 0;
for (ll j = i; j <= N; j += i) {
sum = (sum + bin[j] * j % mod) % mod;
f[i] = (f[i] + j * j * bin[j] % mod) % mod;
}
f[i] = (sum * sum % mod - f[i] + mod) * inv[2] % mod;
}
rep(k, 1, N)
for (int i = k; i <= N; i += k) // i = k * d
ans = (ans + inv[k] * mu[i / k] % mod * f[i] % mod) % mod;
printf("%lld\n", ans);
return 0;
}